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Abstract—Cloud computing has proven its importance to scien-
tists around the globe on many occasions already. However, as
it is still a relatively new technology for many users, the cloud
represents another layer of complexity in any workflow. As a
lot of research confirms, especially the efficient provision and
management of resources in the cloud is a very complex but
also very rewarding task. Upon surveying the research in this
area we observed many differences in applied methodologies
and application cases which impede not only the comparison of
these approaches but also the collective usage of the obtained
results, e.g., for more accurate resource estimation algorithms
that require less additional benchmarking. We propose a
novel application and resource meta-model to model not only
applications but also the underlying resource infrastructure for
application benchmarks in a generic manner. We show how
the meta-model is defined and how it can be used to model an
application, using a simple web application as an example. We
conclude with highlighting the potential benefits of applying
this model in different scenarios but also its limits and how it
could be expanded in the future.

1. Introduction

A variety of complications can be encountered during
application deplyoment in cloud environments. Especially
in the scientific community when dealing with scientific
workflows, HPC or big data applications it becomes more
and more vital to efficiently manage and distribute resources
for computation and storage requirements of applications
with a high resource demand and long execution times.
The convenience of the cloud [1] allows for researchers
and businesses around the globe to get a head-start when
performing new experiments with a high resource demand as
there are no upfront cost to pay. In addition, data storage in
general is cheap which means data can easily be duplicated
to increase its availability, even in different geographic
locations. In the same manner, compute resources including
deployed applications can easily be duplicated as well as
they are also relatively cheap due to the pay-as-you-go
concept. However, this convenience can very easily lead to
over-provisioning of resources and users paying more on
storage and compute resources than necessary. Even if cloud
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resources seem unlimited, one has to be concerned with
their efficient utilization. Furthermore, the initial process of
migrating an application to the cloud involves a lot of steps
which potential users needs to become familiar with first.
The support by a third party or application seems almost
necessary to prevent potential delay if the cloud has been
selected as execution platform. In the case of scientific
experiments which are usually conducted multiple times,
e.g., to reduce measurement errors in the process, ideally,
the user should not have to be concerned with managing the
cloud at all during this process as it adds another level of
complexity and thus more room for errors.

This work proposes to support the execution of a variety
of applications in an efficient manner in a multi-cloud
environment by utilizing a relational application meta-model
which can be used to describe an application and its compo-
nents as well as the underlying resource infrastructure. The
resulting model can be used to repeatedly and automatically
execute an application using different configurations, e.g.,
different data sources, virtual or physical machines, load-
balancer, etc. This reduces the potential for errors while
conducting multiple experiments using the same application
over and over. Furthermore, we aim to utilize the resulting
model to detect similar applications in terms of resource
requirements to predict the requirements of a specific setup
based on previous observations.

The rest of this paper is organized as follows. In Sec-
tion 2 we provide a more detailed formulation of the prob-
lem including current obstacles and challenges as well as
the major goal of this research. In Section 3 we present our
meta-model and highlight its unique properties and advan-
tages but also its limits in the discussed application case.
In Section 4 we briefly discuss existing application meta-
models and their applications. Finally, Section 5 concludes
this work and we discuss the planned future applications of
the presented meta-model.

2. Problem Formulation

Cloud computing is a valuable asset to many companies
and research institute already. The XSEDE cloud survey
report, conducted in 2013 shows that already at that time the
cloud is a valuable asset for many research teams around the



globe [2]. Executing high throughput scientific workflows
has been named one of the major reasons to use the cloud
by the survey participants. In the same survey, the learning
curve for utilizing the cloud, the virtual machine perfor-
mance and data movement cost have been reported as major
challenges in this area. Utilizing the cloud for deploying
any application adds another layer of complexity to it. Au-
tomating this process could simplify this task for end users
significantly. However, fully automating this process is a
complex task by itself, since different applications have very
diverse properties, e.g. different software and infrastructure
requirements. We analyzed a large part of the research in
this area and identified several application classes based on
workload patterns and resource requirements already [3].
Table 1 shows the identified classes which is by no means
a finite selection but based on our observations the most
commonly used in the literature. We concluded, that many
promising resource management solutions for various appli-
cation cases exist already. However, we also noted that there
is a lack of standardized test environments which impedes
the comparability of these solutions which mostly have been
tested in quite specific scenarios only. Given the amount of
cloud providers available, choosing the right provider for
a certain job is an additional problem which needs to be
solved in order to use the cloud to its maximum efficiency.
Gartner has chosen 205 different evaluation criteria alone
which could play an important role when selecting an IaaS
provider.!

It has been shown on many occasions already that mod-
eling an application or resources is indeed useful to predict
its behaviour on a certain infrastructure [4]-[11]. As we
already did an in-depth analysis of most of these papers in
our previous work, we are going to cover these just briefly
in section 4. However, one problem with most approaches
is, that they are application specific and thus only useful
in a certain application case. Furthermore, this makes the
comparison of these approaches difficult if not impossible
since no standardized evaluation for those models exist.
Additionally, most solutions use one specific resource con-
figuration for their evaluation, e.g. one large instance at
cloud provider A, which can also be different between
approaches, making it even more difficult to compare them
with each other. Research that involves benchmarking these
instances, also considering multiple cloud providers to select
the most appropriate for one type of application, exist,
however, these approaches suffer from the same problem,
as different evaluation criteria are used, making it difficult
to compare them with each other. Therefore, the goal of our
research is to provide a meta-model for applications, which
considers the underlying resource configuration as well, as a
tool for not only modelling but also benchmarking a variety
of applications on different cloud platforms to enable a fair
comparison between cloud platforms as well as scientific
applications and their usefulness in specific scenarios, e.g.
genome analysis or certain big data analysis scenarios.

1. https://www.gartner.com/webinar/3266523?srcld=1-7840328974 - ac-
cessed: 2017-04-18
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3. Our Application Meta-Model

As mentioned before, we did an extensive review of
existing resource management approaches in the area of
cloud computing [3]. We concluded that many promising
solutions for various application cases exist already, which
are, however, mostly application specific and not comparable
to each other due to the lack of standardized test environ-
ments. Based on our previous findings, we are proposing
a relational meta-model to store information about applica-
tions and machines as well as performance benchmarking
information about them. ’Machines’ is used as a general
term to describe not only virtual but also physical machines.

As depicted in figure 1, machines can also be represented
as nested machines to cover as many deployment options as
possible, e.g., a virtual machine or container on a physical
machine or another virtual machine. Potentially, although
not intended, a machine could also represent a server rack
or even a data center. However, that would not only be con-
fusing in terms of terminology, additionally, data centers can
already be represented in our model as a so called compute
cloud. It is further possible to model the physical machines
that provide the basis for a compute cloud which makes
it possible to even model data centers that are deployed
completely inside another compute cloud. The model allows
basic information about a machine to be stored as a so called
flavour which includes number of CPU cores, amount of
memory and storage, storage type, f.e., SSD or not, and the
network speed as a string, e.g., ‘slow’ or ’fast’, as this is
usually the way this information is provided by the cloud
service vendor. If more detailed information about machine
resources and attributes like location, IP address or name
is available it can be stored in two separate tables linked
to machine. Beside compute clouds, we decided to allow



TABLE 1. APPLICATION CLASSES IN RESOURCE MANAGEMENT FOR IAAS CLOUDS BY DIFFERENT CATEGORIES [3]

Type of Workload

Web Server and SaaS Scientific Applications Benchmark Applications
Communication | File Storage Processing Big Data Learning Micro- System- Application
Online Shops Interactive DBMS Workflows Algorithms Benchmarks Benchmarks Benchmarks
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Figure 2. The core of our proposed application meta-model

for storage clouds to be stored separately in our model. A
storage cloud refers to any service that can be used to create
any means of storage in a cloud environment. Therefore,
also block storage devices, which are called ’drivestorage’
in our model, can be represented as part of a machine
but managed with a storage cloud service. Lastly, CPU
cores are also stored separately in this model. Although this
information might be redundant with data from the resource
table, it enables to link benchmark results to a specific core
to determine how many cores an application part is able
to utilize which can be important information for scaling
decisions.

Figure 2 shows the part of the meta-model for modeling
applications. An application in our model consists of at
least one application part. Separating an application into
parts can be used to represent multi-layered applications that
are deployed in a distributed manner, f.e., every application
part is deployed on a different machine. Additionally, every
application part has a type. This can either be a storage part
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Figure 3. An example for modeling stage transitions for a simple web
application that receives a request, fetches data from a data storage and
delivers it back to the requester

like a database or a bucket in a storage cloud or a compute
part which is true for all other application parts that are
not majorly used for storing or providing data. Exchanging
data between application parts is modeled through interfaces
which can be linked to a trigger or a result of an application
stage which is a section during the execution of an applica-
tion part that has a unique resource consumption pattern. As
an example, the simplest application stage imaginable would
be an idle stage in which the application part does nothing
at all. Using a trigger can further be utilized to model the
transition between application stages. Ideally, we would like
to make the assumption, that every application part behaves
similar to a deterministic finite automaton [12] whereas the
application stages represent the states of the automaton and
the triggers represent the transition function using system
values like network, disk or memory 1O as the alphabet.
Figure 3 shows an example for modeling stage transi-



tions in this manner for a simple blocking web application
which consists of two parts for demonstration purposes. Part
2 in our example is a storage application part that only has
two stages. The first one is the idle stage in which the part
does nothing but waiting for requests. Since incoming re-
quests are too short, they are not considered as an additional
application stage. The process of sending data from the
storage to another part that requested it will be considered
however. In the example this stage is called S1. The job of
the first application part is solely to forward a request for
certain data from a client to the storage part and to send it
back to the client. Therefore, it has four stages in total, an
idle stage, S1 in which the client request will be received
and processed, S2 in which the data from part 2 is received
and S3 for sending the data back to the client. Again, the
actual request from the client is not actually considered
as separate stage but rather processing the request which
could be a simple look-up in a local database to check if
the client has the appropriate rights to request the data.
Stage transitions can be detected automatically based on
which of the connecting interfaces become active or inactive.
One special case occurs if the client does not have the
appropriate access rights. In this case the part goes back
to the idle stage and waits for another request which can be
detected by the CPU going into an idle state itself. If the
application behaves different from the last time it has been
executed, e.g., assuming we did not detect beforehand that
it is possible for the application part to refuse the request
from the client and to go back to the idle stage immediately,
all that needs to be changed in the database is the addition
of another trigger for the idle stage. In fact, any behavioural
changes that are detected at a later point in time will lead
to either adding a trigger or adding an application stage
and a trigger. Obviously, for any modern web-application,
such a behaviour would be far too simple. Modeling such
an application with this approach is therefore one potential
weakness as it is likely that hundreds of stages will be
detected if the same number of clients tries to access the
application at once. Consequently, it is important so have the
ability to adapt certain thresholds, e.g., the time in which an
interface is active or the CPU utilization of the benchmarked
application part, for the automatic detection of application
stages. For some applications this approach might still be
too generic after all which makes using this model in the
proposed manner not possible or too inefficient. Another
problem that is likely to occur with a generic approach
such as this is related to the prediction of stage changes.
In case multiple triggers or stage changes are possible at
a certain point in time, we currently only know which one
will occur if the user provides the expected workflow for an
application. In future work it might be possible to estimate
stage changes based on previous observations as well, but
this is not in the scope of this paper.

However, if the above assumption holds true and it is
possible to automatically detect an appropriate number of
application stages, we further assume that every stage will
have indeed a unique resource consumption pattern which
can be identified automatically based on the benchmarking

data and assigned to a certain class which further allows
the detection of similar application stages based on their
resource consumption patterns. As the purpose of this model
is to enable a simple and fair benchmarking process for
applications on different resource configurations to support
the automatic selection of the optimal resources for an appli-
cation even before executing it, we also have to assure that
the runtime and resource consumption of every application
stage can be predicted based on previous observations using
this model. We propose a novel methodology for this process
as follows. The model supports the collection of a variety of
not only benchmarking values but also configuration values
for every part of the application and every machine the
parts are running at. Based on which of these values are
available, f.e., have been collected beforehand, and based on
the class of the application stage and previous observations
with similar stages the most optimal applications/algorithms
for predicting the initial resource demand and, if necessary,
load balancing are selected beforehand.

A potential problem with this approach is that it heavily
relies on benchmarking as most other approaches do. How-
ever, the utilization of a meta-model which is designed to
consider experimental results and setups from many other
research papers in a systematic manner is aiming to solve
this problem. This creates a unique way of comparing
not only different benchmarking but also resource demand
estimation and load balancing approaches for a variety of
applications.

Admittedly, this is still a work in progress as some
details like the thresholds for automatically detecting ap-
plication stages have not been clarified yet. However, the
meta-model in its current state can and has already been
utilized to model a variety of applications. Currently, we are
in the progress of conducting a variety of application bench-
marks for genomic applications on different setups, e.g.,
several public and private clouds. The collected data can
be utilized for the automatic execution and benchmarking
of these applications and further for automatically selecting
the most appropriate infrastructure for future experiments.
Lastly, we are also developing a web-application to easily
access and manage the data about applications, resources
and benchmarks to reduce manual input of data as much as
possible which in turn reduces potential errors in the data
as well.

4. Related Work

We present the most important and recent work in the
area of resource and application modeling. Specifically, we
take a closer look at research in application meta-modelling.

Resource Modeling. We discussed all the presented papers
in this section in our previous work in more detail already.
Therefore, we are only going to briefly cover the following
approaches.

EMUSIM [4] is a work by Calheiros et al. in which an
application model is created through emulating the applica-
tion behaviour in the cloud which can be used to simulate



the behaviour with a larger number of requests afterwards.
This approach shows that modeling can indeed reduce the
benchmarking effort for estimating the performance of ap-
plications in the cloud. Hajjat et al. [5] developed a model
that can be used calculate how different application compo-
nents affect each other which is a simple way to determine
if these can be geographically distributed or not. A rather
different approach from Wu et al. [13] is used to model
performance fluctuations on a resource level. In future work,
this approach can be utilized to predict how the performance
of the underlying resource infrastructure for an application
varies over time. The approaches by Li et al. [7] and Tak
et al. [8] are similar as they both include the creation of a
dummy application that simulates the application behaviour
and resource consumption in the cloud. These are not partic-
ularly modeling approaches but they show that it is possible
to benchmark the resource consumption of an application in
such detail, that it is even possible to imitate its supposed
behaviour on a different infrastructure.

Application Modeling. Kounev et al. [9] presented an
approach to model the interactions between the applica-
tion workload and resource contention at multiple levels
in the execution environment. It can be utilized to predict
the performance of applications in different scenarios, with
different constraints and ultimately to create a self-aware
computing system that constantly monitors the state of
the applications running on it and creates strategies if the
expected future workload might lead to over- or under-
provisioning of resources. The approach has been tested in a
variety of scenarios with a largely positive result. The model
also has some similarities with our proposed meta-model,
especially the resource landscape model. However, as this
work is mostly concerned with preventing SLA violations
and online analysis of benchmarking results, the focus of
the model for applications is different from ours, as we
are concerned with mostly offline analysis of results and
a more generic approach to modeling the actual application
behaviour. Furthermore, we specifically want to support the
ability to compare applications with each other and poten-
tially utilize benchmarking results from previously observed
applications to support a resource management task for a
completely new application.

5. Conclusion and Future Work

We proposed a novel application and resource meta-
model with the purpose of modeling applications the un-
derlying resource infrastructure as well as associated bench-
mark information about the whole setup in a generic man-
ner. We showed with a simple example that modeling an
application with this approach is very straightforward but it
can lead to complications as the concept of automatically
identifying stages is too generic at this stage and needs to
be refined for such application cases. We also mentioned
the theoretical possibility that this meta-model can be used
to store results from related work in the area of resource
management to potentially enable a fair comparison of

approaches in the future. Another benefit of having access
to data from all these different sources is that benchmark
results for a variety of application classes can also be utilized
collectively, potentially resulting in a reduced benchmark
effort for future research.

In the future we plan to provide a more detailed de-
scription about how exactly the meta-model can be applied
to a variety of application cases. We also working towards
automating the benchmarking process and conducting fur-
ther benchmarks with a wider range of applications. Fur-
thermore, we want to integrate detailed information about
pricing in public clouds in our model to simplify the calcu-
lation of the expected cost for a benchmark or an application
execution. Finally, we hope to utilize the collected data to
create a proof of concept for a resource and cost demand
estimation algorithm that is able to predict the demand for
new applications with a low benchmarking effort based on
the concepts presented in this paper by utilizing existing
benchmarking data from similar applications.
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